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Abstract

Phonetic forced alignment can greatly expedite spoken language analysis by providing au-

tomatic time alignments at the word- and phone-levels. In the case of low-resource languages,

it remains an open question whether phone-level forced alignment will be more successful with

a small language-specific acoustic model or a high-resource cross-language acoustic model.

The present study directly compared language-specific and cross-language acoustic models in

forced alignment performance using the Urum and Evenki datasets from the DoReCo Cor-

pus. We evaluated six language-specific acoustic models trained with 5, 10, 15, 20, 25, or

approximately 70 minutes of language-specific speech data against four English-based cross-

language acoustic models that differed in size and accent homogeneity (large Global English

or homogeneous American English of varying data amounts). Acoustic models were devel-

oped or obtained from the Montreal Forced Aligner, and evaluated against held-out manually

aligned phone boundaries. Overall, the Global English model and the larger language-specific

acoustic models were competitive with one another, and outperformed the homogeneous cross-

language and smaller language-specific acoustic models. From this analysis, we recommend

that researchers use a language-specific model with at least 25 minutes of speech (not just

audio) or a large, diverse cross-language acoustic model for low-resource forced alignment.
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1 Introduction

Access to diverse, multilingual spoken language data has risen considerably in recent years, in

large part due to increased computational capacity. Diverse spoken language data has come from

traditional fieldwork sources, compilations of prepared large-scale read speech recordings (e.g.,

Panayotov et al. 2015; Black 2019), as well as large-scale crowdsourced datasets, where speakers

may contribute spoken data via a computer or smartphone (Ardila et al. 2019). Phonetic analysis

of spoken language data can benefit substantially from a time alignment of the speech transcript

to the audio file at the utterance-level and ideally also the word- and phone-levels. Time align-

ments facilitate subsequent language documentation at all levels of analysis, allowing researchers

to efficiently locate segments of interest. Several methods currently exist for locating segments

of interest within an audio file, including phonetic forced alignment, keyword spotting, and auto-

matic speech recognition (ASR; Foley et al. 2018; Le Ferrand et al. 2020; Bird 2021; San et al.

2021; Coto-Solano 2022). Accurately labeling and aligning audio files from fieldwork, prepared,

or crowdsourced datasets have tremendous implications for advances in linguistic research, com-

munity resource development, and the development of language-related tools (e.g., text and speech

technology, language documentation, tools for language learning).

In the present study, we focus on phonetic forced alignment, in which an acoustic model of a lan-

guage’s phone set is used to identify the boundaries of each phone in its expected sequence based on

the speech transcript. In contrast to manual segmental alignment, forced alignment is estimated to

be anywhere from 200 to 400 times faster (Yuan et al. 2013; Young &McGarrah 2023). This tech-

nique has become increasingly important for phoneticians, where acoustic-phonetic analyses are

conducted on spoken data collected in the field, in a sound booth, or using crowdsourced method-

ologies (Leemann et al. 2016; Stuart-Smith et al. 2019; Paschen et al. 2020a; Salesky et al. 2020;

Ahn&Chodroff 2022; Hutin &Allassonnière-Tang 2022; Zhao&Chodroff 2022). Resulting anal-

yses advance our empirical and theoretical understanding of phonetic realization across individual

talkers, dialects, and languages.

Phonetic forced alignment is widely used for “high-resource” languages, where considerable data

exists for training the necessary acoustic models (e.g., English). Moreover, several researchers have

demonstrated the efficacy of “cross-language forced alignment”, in which high-resource acoustic

models such as English are used to align low-resource languages. In cases when available data

is particularly low (e.g., <2 hours), as in many fieldwork situations, it is uncertain how language-

specific acoustic models compare to higher-resource cross-language acoustic models in terms of

performance. While cross-languagemodels benefit from greater amounts of training data, language-

specific models may benefit from more precise acoustic exposure. In the present study, we directly

compared small language-specific acoustic models against cross-language acoustic models for pho-

netic forced alignment of low-resource languages. The small language-specific acoustic models

represent a common scenario in speech resource development in a fieldwork setting: speech data

is available but with limited amounts of transcribed data. The cross-language models include a

pretrained Global English model (the english_mfa 2.0.0a model from the Montreal Forced Aligner

(MFA):McAuliffe & Sonderegger 2022b) with over 3000 hours of training data, as well as acoustic
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models developed using varying amounts of American English, representing a more homogeneous

but high-resource source of speech data.

2 Background

2.1 Forced alignment systems

Phoneticians havemost extensively relied on forced alignment systems such as theMontreal Forced

Aligner (MFA;McAuliffe et al. 2017, Gentle (Ochshorn&Hawkins 2017), MAUS andWebMAUS

(Schiel 1999; Kisler et al. 2017), the Prosodylab-Aligner (Gorman et al. 2011), FAVE (Rosen-

felder et al. 2022), the Penn Forced Aligner (Yuan & Liberman 2008), the Language, Brain and

Behaviour: Corpus Analysis Tool (LaBB-CAT) (Fromont & Hay 2012), or easyAlign (Goldman

2011). Several of these systems use a GMM-HMM architecture, where the expected sequence of

phonetic segments (henceforth ‘phones’) can be modeled with a Hidden Markov Model (HMM),

and their corresponding acoustic properties with a Gaussian Mixture Model (GMM). These sys-

tems commonly employ automatic speech recognition toolkits such as the Kaldi Speech Recog-

nition Toolkit (Povey et al. 2011) for MFA and Gentle and the HTK Toolkit (Young et al. 2002)

for Prosodylab-Aligner and FAVE to create a usable pretrained acoustic model for phonetic forced

alignment .1 Each system minimally offers the user an American English acoustic model, with

many offering a slightly wider range of acoustic models for different languages.

Training an acoustic model has traditionally required computational power, speech data, and the

know-how to train an acoustic model. For several years, the available acoustic models covered only

a handful of the world’s languages, and the alignment algorithm was frequently associated with a

particular language. For instance, FAVE and the Penn Forced Aligner employed an acoustic model

trained on American English from the SCOTUS Corpus (Yuan & Liberman 2008; Rosenfelder

et al. 2022); the original version of the MFA relied on an acoustic model trained on American

English from the Librispeech Corpus (Panayotov et al. 2015; McAuliffe et al. 2017), and MAUS

was originally developed using spoken German data (Schiel 1999).

The availability of language-specific models has recently expanded as cross-linguistic speech cor-

pora have become more readily accessible. Several language-specific acoustic models are now

currently available through WebMAUS and the MFA, and have been trained on speech corpora

such as GlobalPhone, Common Voice, among others (Strunk et al. 2014; McAuliffe et al. 2017;

Kisler et al. 2017; Ahn & Chodroff 2022) Moreover, toolkits such as the MFA or the Prosodylab-

Aligner have enabled speech researchers to train—with relative ease—acoustic models for phonetic

forced alignment on their own language-specific data using their own computer. In a fieldwork set-

ting, language-specific acoustic models have been developed for Matukar Panau using the MFA

(Gonzalez et al. 2018; Barth et al. 2020), Eastern Chatino using the Prosodylab-aligner and eSpeak

1The HTK toolkit is no longer compatible with modern computer operating systems, which has resulted in a decline

in the use of the Prosodylab-aligner, FAVE, and the Penn Forced Aligner.
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(Ćavar et al. 2016), Mboshi using custom tools in STK (Synthesis ToolKit in C++; Cook& Scavone

1999; Mitkov 2014; Godard et al. 2018), and Tongan using the Prosodylab-Aligner (Johnson et al.

2018). Additional language-specific acoustic models have also been developed directly using the

Kaldi Speech Recognition Toolkit (Dias et al. 2020) or using more recent end-to-end ASR systems

(Biczysko 2022; Zhu et al. 2022).

2.2 Development of acoustic models: how much data is necessary?

McAuliffe (2021) conducted a comparison of training set sizes for forced alignment using the Buck-

eye Corpus of American English (Pitt et al. 2005). The Buckeye Corpus contains about 16.5 hours

of true speech (pauses dropped) from 40 speakers, and has the convenient property of being man-

ually aligned at the phone level. Training sets were varied in terms of number of speakers in the

mixture, which also corresponded to the overall duration of the training set. When testing on the

training data (not an uncommon situation when a researcher simply needs a best-fit alignment),

word boundary errors, as measured by distance to annotated time point, were generally on target

from even the smallest training sizes, but variance decreased as the training size increased. In ex-

amining phone boundary errors in selected CVCwords, the error was variable with smaller training

sizes, but was not far off from ceiling around the five to ten speaker mark (around three to five hours

of speech). In terms of model generalization to new data, both word and phone boundary errors

were fairly high until around 20 speakers (around eight to ten hours of speech).

When fitting directly to the data, it was thus recommended to have three to five hours of speech;

for generalizing to similar data, it was recommended to have around eight to ten hours of speech.

Though the analysis was quite thorough, the study only investigated the training and generalization

on American English speech with limited investigation beyond the Buckeye Corpus. It remains to

be seen whether such figures might also hold for other languages.

Critically, however, even three hours of training data may not even exist for some languages. In

those cases, should we still attempt to train an acoustic model on the available data? Alternatively,

would it be better to use cross-language forced alignment using an acoustic model trained on con-

siderably more data from another language?

2.3 Cross-language forced alignment

An alternative to language-specific acoustic models is cross-language forced alignment. Given

limited accessibility to training algorithms or just limited language-specific training data, it has

been common to use pretrained acoustic models on other dialects and even language varieties.

Language-specific phone labels can be mapped to labels in the high-resource pretrained phone

set, and then back again following forced alignment. These studies have benefited from the large

amounts of training data available for high resource languages like American English, French, or

Italian, and have used these acoustic models as substitute acoustic models for a different language.
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The majority of cross-language forced alignment scenarios have involved American English acous-

tic models. American English has been used to align other varieties of English, including British

English (MacKenzie & Turton 2020), Australian English (Gonzalez et al. 2020), and several cre-

oles with varying English influence (North Australian Kriol: Jones et al. 2019; Bequia Creole:

Walker & Meyerhoff 2020). More notably, American English has also been used to align typo-

logically distinct languages such as Mixtec (DiCanio et al. 2013), Nikyob (Kempton 2017), Bribri

(Solórzano & Coto-Solano 2017), Cooks Islands Maori (Coto-Solano et al. 2018), Yidiny (Babin-

ski et al. 2019), Matukar Panau (Barth et al. 2020), various Uralic languages (Leinonen et al. 2021),

Nordic languages (Young & McGarrah 2023), and many others (e.g., Sim & Li 2008; Kurtić et al.

2012; Johnson et al. 2018).

In some cases, researchers may identify an alternative high resource language that could serve

as a better substitute model for the language at hand. For instance, French acoustic models have

been used to align Bribri (Solórzano & Coto-Solano 2017) and Italian acoustic models have been

used to align North Australian Kriol (Jones et al. 2019). Bribri alignments generated from an

American English-based systemwere generally more precise compared to the French-based system

(Solórzano & Coto-Solano 2017). Though both systems employed an HTK architecture, the exact

system architectures (English FAVE vs French EasyAlign), amount of training data, and choice of

phone mappings also differed between the two languages, making it difficult to isolate the source of

the performance difference. North Australian Kriol was alsomore accurately alignedwith an Italian

acoustic model compared to a multilingual acoustic model available through MAUS (Jones et al.

2019). Though North Australian Kriol is an English-based creole, Italian was chosen in this case

given its similarly transparent orthography, its similar vowel system, and the similar spontaneous

speech style to the data collected in fieldwork. Finally, Tang & Bennett (2019) pooled data from

two related Mayan languages, Kaqchikel and Uspanteko, to increase sample size in a variation of

cross-language phonetic alignment.

3 Methods

To evaluate the quality of forced alignment produced by language-specific or cross-language acous-

tic models, the present analysis tested acoustic models from the MFA on data available through

DoReCO – Language Documentation Reference Corpora (Paschen et al. 2020b). While a wide

range of forced aligners are available, we chose the MFA for a few reasons: first, it builds on a

high-quality ASR toolkit, Kaldi, that enables custom acoustic model training; second, it is user-

friendly, and third, it includes a very large, pretrained Global English acoustic model that we could

use in our cross-language comparisons. Finally, the system performs consistently well against other

forced alignment systems (Mahr et al. 2021).

For the data, we employed two of the larger language datasets available through DoReCo, Urum

(Turkic; 93 min of speech) (Lorenz et al. 2022) and Evenki (Tungusic; 87 min of speech) (Kaza-

kevich & Klyachko 2023), which both contained recordings of personal or traditional narratives

provided in a spontaneous to semi-spontaneous manner. DoReCo proved a useful starting point
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for our investigation given its online accessibility, representativeness for standard fieldwork data,

and the availability of manually-aligned word boundaries which facilitated the manual phone-level

alignments for the gold data.

3.1 Datasets

Urum is a Turkic language spoken in Georgia and southern Ukraine by approximately 171,000

speakers (Eberhard et al. 2023).2 The full Urum dataset contained 93 minutes of speech from

32 speakers in 132 audio files, and was collected in Georgia around 2005 (Lorenz et al. 2022).3

Based on the phonetic transcription provided with the corpus, the Urum phonetic inventory has 30

consonants and 9 vowels (Table 1).

<TABLE 1>

Evenki is a Tungusic language spoken in Russia, China, and Mongolia by approximately 16,830

speakers (Eberhard et al. 2023).4 The full Evenki dataset contained 87 minutes of speech from 23

speakers in 36 audio files (Kazakevich & Klyachko 2023). Based on the phonetic transcription

provided with the corpus, the Evenki phonetic inventory has 28 consonants and 13 vowels (Table

2).

<TABLE 2>

In the DoReCo release for each language, foreign material, false starts, filled pauses, unidentifiable

material, and prolongations were marked with brackets, followed by an orthographic representation

of the spoken segment. Foreign material for both Urum and Evenki was almost always Russian. If

any transcription followed the bracketed annotation, it was given a romanized transliteration. We

converted these segments to pronunciations using the same grapheme-to-phoneme system as the

remainder of the corpus.

The conversion from orthography to pronunciation was done semi-automatically. In the case of

prolongations with transcribed material, the automated pronunciation was sometimes incorrect as

the transcriber frequently entered the word multiple times in a row, even if it was said only once.

These cases accounted for less than 1% of the listed word types, and by token count, were even

rarer. In Urum, digits were also given pronunciations by listening to the audio file and using the

same phone set as was already in the corpus; these were always in Russian. Critically, while these

pronunciations were used for the purposes of training the acoustic model, any bracketed segment

or transcribed digit was excluded from the analysis of the test set.

The Urum test set had approximately eight minutes of analyzable speech from 11 speakers (22

minutes of audio). The original amount of test data was originally higher (around 14 minutes);

2https://www.ethnologue.com/language/uum/
3Speech duration was estimated from the sum of the manually aligned word boundaries provided in the DoReCo

Corpus. Audio duration was simply the duration of the full audio files.
4https://www.ethnologue.com/language/evn/

https://www.ethnologue.com/language/uum/
https://www.ethnologue.com/language/evn/
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however, bracketed but transcribed segments, such as foreign material and false starts, were ulti-

mately excluded. The test set was manually aligned at the phone level by two trained linguists. The

full Urum train set had 79 minutes of speech (including bracketed but transcribed segments) from

25 speakers (124 minutes of audio). Seven of the speakers overlapped between train and test sets.

Recording quality was generally marked as “good” (188/246) or “medium” (53/246), with only a

few instances of a “bad” (5/346), as indicated in the metadata from DoReCo. Background noise

was also minimal (no reported background noise: 130/246, punctual background noise: 98/246,

constant background noise: 18/246). The test data contained only “good” (19/26) or “medium”

(7/26) sound qualities with a mixture of background noise (none: 10/26, punctual: 15/26, constant:

1/26).

The Evenki test set was created with nine minutes of speech from five speakers (26 minutes of au-

dio). (This was originally 15 minutes including the bracketed but transcribed material.) This was

manually aligned at the phone level by two trained linguists. The full Evenki train set had 72 min-

utes of speech from 18 speakers (153 minutes of audio). None of the speakers overlapped between

train and test sets. Recording quality varied considerably from impressionistic markings of “good”

(13/36) to “medium” (19/36) to “bad” (4/36), as indicated in the DoReCo metadata. Background

noise was present in most recordings (no reported background noise: 9/36, punctual background

noise: 26/36, constant background noise: 1/36). The test data contained only “medium” sound

qualities with punctual background noise (5/5).

3.2 Preparing the MFA input

For the MFA input, we created a Praat TextGrid file for each wav file with the utterance-level

alignment from the DoReCo release and the corresponding transcript. The pronunciation dictio-

nary was obtained directly from the DoReCo data, which included a phonetic transcription for

each word. Inspection of the data suggested that the original authors of both datasets used a rule-

based grapheme-to-phoneme (G2P) system to convert the orthography to a phonetic transcription.

Foreign words (always Russian from our assessment for both Urum and Evenki), false starts, and

prolonged words were then assigned phonetic transcriptions using approximately the same G2P

mapping for the primary language. In these cases, we found that the Russian transliteration fol-

lowed a similar G2P mapping as the Urum and Evenki orthographies. Nevertheless, any word with

this type of marking was excluded from evaluation: these words were thus included in the training

material and present for alignment, but were not included in any of the evaluations. Within the

test data, the median proportion of removed segments per utterance (“contamination” in the input

utterance) was 0.33 for Urum and 0.20 for Evenki.

3.3 Acoustic models

To compare low-resource language-specific and cross-language forced alignment, we wanted a

representative sample of acoustic models. A total of 30 language-specific acoustic models were
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created that were trained on 5 to 25 minutes of true speech data in 5-minute increments with six

subsets per duration level. The motivation for six subsets was somewhat arbitrary, but allowed for

sufficiently different mixtures of the training data at each duration level, with three subsets contain-

ing high speaker variability with many speakers present (e.g., 5H1, 5H2, 5H3) and three subsets

containing low speaker variability with few speakers present (e.g., 5L1, 5L2, 5L3). The selection

of data was mostly created anew for each duration level to best match the targeted duration: for ex-

ample, 5H1 was not necessarily a full subset of 10H1. The language-specific acoustic models were

each trained using the default parameters in the MFA v2 train algorithm (version 2.0.6). To reduce

the number of comparisons in evaluation, we selected the median-performing language-specific

acoustic models from each duration level: 5, 10, 15, 20, or 25 minutes of training data. That is,

among the six acoustic models per duration level (e.g., 5H1, 5H2, 5H3, 5L1, 5L2, 5L3), the chosen

acoustic model was ranked third in performance, as assessed via median boundary difference (see

Section 3.4 for more details). An additional acoustic model was trained using the full train set for

each language, which we refer to as the 70+ minute model (82 minutes for Urum and 70 minutes

for Evenki). In total, there were six language-specific acoustic models (one each for the duration

levels of 5, 10, 15, 20, 25 or full).

Naturally, the amount of training data per tested phone differed across these acoustic models. The

range and median number of tokens per phone can be found in Tables 3 and 4. For Urum, all 37

phones in the test set had a corresponding phone-specific model within each acoustic model ([l:]

and [m:] did not appear in the test set). For Evenki, all but two of the 40 phones in the test set were

present in the tested acoustic models: the 5-min model was missing a phone-specific model for

[e:] and the 20-min model was missing a phone-specific model for [lʲ]. These phones, however,

accounted for less than 0.025% of the test set.

Four cross-language acousticmodels were evaluated in performance relative to the language-specific

acoustic models. The cross-language models were a large Global English model (>3500 hours of

Global English), a 100-hour American English model, a 10-hour American English model, and an

American English model matched to the number of minutes in the full language-specific models

(approximately 75 minutes of speech).

The Global English model was available via the MFA repository of pretrained acoustic models

(english_mfa 2.0.0a) and was trained on approximately 3700 hours of English spoken around the

world (Global English) (McAuliffe & Sonderegger 2022b). The training data for this dataset comes

from Common Voice English v8.0 (2480 hours) (Ardila et al. 2019), LibriSpeech English (982

hours) (Panayotov et al. 2015), the Corpus of Regional African American Language v2021.07

(124 hours) (Farrington & Kendall 2021), Google Nigerian English (6 hours) (Butryna et al. 2020),

Google UK and Ireland English (31 hours) (Demirsahin et al. 2020), NCHLT [South African]

English (56 hours) (Barnard et al. 2014), and ARU [British] English (7 hours) (Hopkins et al. 2019).

Given the dialect variability, the resulting acoustic model has a diverse phone set and representation

of speech variation.

The three additional cross-language acoustic models were trained on American English speech

from the LibriSpeech ASR Corpus (Panayotov et al. 2015), which contains read speech of audio-
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books from mostly American English speakers. The pronunciation dictionary for these corpora

was the Global English dictionary from the MFA (McAuliffe & Sonderegger 2022a). At the time

of implementation, this was the default English dictionary with the MFA, and the only available

English dictionary with IPA symbols.5 The American English acoustic models were trained using

the default parameters in the MFA v2 train algorithm (versions 2.1.7, 2.2.3, and 2.2.11).6 The first

American English dataset contained 100 hours of data from the LibriSpeech “clean” train dataset

(Panayotov et al. 2015).7 The second American English dataset contained 10 hours of speech from

the same LibriSpeech “clean” train dataset. The third American English dataset was matched in the

number of minutes to the full language-specific acoustic model (approximately 75 minutes). This

dataset contained data from the LibriSpeech “clean” dev dataset and had the same number of speak-

ers and gender breakdown as the original Urum or Evenki full dataset. These datasets served as a

more homogeneous representation of English, and aimed to deconfound the amount of training data

(number of hours or minutes) from the language input (American English vs language-specific).

The 100-hour sample represents a large, but phonetically homogeneous cross-language scenario.

The 10-hour sample represents the recommended amount of training data for language-specific

alignment (McAuliffe 2021), but in a homogeneous cross-language scenario. Finally, the matched

sample deconfounds the amount of data from the language input, allowing us to understand the

importance of language specificity.

The language-specific pronunciation lexicon was obtained directly from the DoReCo phone tran-

scriptions or from our application of grapheme-to-phoneme conversion. The cross-language pro-

nunciation lexicon was obtained using the Interlingual MFA Toolkit (Dolatian 2023) by mapping

the language-specific phones to English phones as specified in Tables 1 and 2. The symbols were

then mapped back to their original symbols prior to evaluation.

3.4 Evaluation

The evaluation metrics were the percent data retention, the absolute difference between the aligned

and gold boundary for phone onsets (MacKenzie & Turton 2020; Mahr et al. 2021), which we refer

to as precision, and finally, the alignment accuracy (Mahr et al. 2021).

Data retention refers to howmany segments were aligned; in many cases, phone and word intervals

are entirely skipped by the alignment interval if the performance is too poor. The percent data reten-

tion was calculated based on the number of successfully merged aligned and gold phone intervals

divided by the expected number of gold phone intervals. Data retention was assessed descriptively

as a first indicator of potential issues with model performance.

5A few dialect-specific English acoustic models and dictionaries have since been made available. Though we could

additionally test the influence of the precise phone specifications, we leave this analysis to future work. One advantage

of the current approach is that the primary differences between the Global English and American English models is

the audio data being used for training.
6The MFA v2 train algorithm did not change across these releases.
7“Clean” here indicates that the speech from these speakers was recognized with reasonably high accuracy by an

automatic speech recognition system.
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Precision refers to the difference between the gold and aligned boundary of the phone onset (see

also Solórzano & Coto-Solano 2017; McAuliffe et al. 2017; Gonzalez et al. 2020; Mathad et al.

2021 for a similar use of phone onset difference). Precision was assessed descriptively in terms

of median rank absolute boundary difference as well as the percent of tokens per model with a

boundary within 20 ms of the gold boundary. A linear mixed-effects model was then used to assess

variability in the token-level absolute boundary difference in log seconds based on the acoustic

model (always compared to the Global English model), input utterance duration, proportion of

bracketed segments in the input utterance (“contamination”), natural class of the preceding seg-

ment (vowel, approximant, nasal, fricative, stop, or silence), natural class of the target segment

(vowel, approximant, nasal, fricative, or stop), as well as the interactions between natural class of

the preceding and target segments. A random intercept was included for audio file. Prior to the log

transformation, any tokens equal to 0 were converted to 0.001 s to avoid infinite values.

Alignment accuracy was defined as whether the forced aligned interval contains the midpoint of the

gold interval (Knowles et al. 2018; Mahr et al. 2021). Accuracy was assessed descriptively in terms

of rank, followed by a logistic mixed-effects model for each language. The model structure was

the same as for the boundary difference, but without the interactions between the natural classes of

the preceding and target segments. (Further interactions led to non-convergence.)

For the linear and logistic mixed-effects regressions, preceding and target natural class were sum-

coded. For the six-level natural class of the preceding segment, the held-out level was silence,

and for the five-level natural class of the target segment, the held-out level was stops. Acoustic

model was always treatment-coded with each model compared to the Global English 3700 hr model

(American English 100 hr, American English 10 hr, American English 70+ min, 70+ min, 25 min,

20 min, 15 min, 10 min, 5 min).

4 Results

4.1 Retention

As shown in Figure 1, retention was generally high across all acoustic models for both languages.

No major patterns were observed between the cross-language and language-specific models. Re-

tention was, however, consistently lower for the median-performing 5-minute models.

<FIGURE 1>

4.2 Precision

For both languages, the tested language-specific and cross-language acoustic models were fairly

competitive with one another in terms of the median boundary difference and the percent of bound-

aries within 20 ms of the gold test boundary (Figure 2, Figure 3). The consistent exception was
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the median-performing 5-min model, which had a noticeably higher and more variable boundary

difference for both languages, along with a remarkably low percentage of boundaries within 20 ms

of gold (16% for Urum and 14% for Evenki). In addition, precision noticeably worsened across the

15-, 10-, and 5-min models for Evenki, whereas the most noticeable performance drop was from

the 10-min model to the 5-min model for Urum. Across both languages, the top three perform-

ing models with respect to both precision metrics included the Global English 3700 hr model, the

full language-specific model, and the median-performing 25-min model. Ceiling performance as

assessed by agreement within 20 ms was at 69% for Urum and 60% for Evenki.

The linear mixed-effects models for Urum and Evenki revealed several significant effects.8 For

Urum, only the full language-specific acousticmodel was significantlymore precise than theGlobal

English acousticmodel. Otherwise, theGlobal Englishmodel significantly outperformed the smaller

language-specific models and the American English models. Longer input utterance durations also

corresponded to significantly worse precision (Figure 4a). Higher contamination proportions per

input utterance—that is, the proportion of bracketed segments due to foreign material, false starts,

pauses, etc.—also significantly reduced precision. Several main effects and interactions of the

targeted and preceding natural classes also reached significance. Significantly worse precision

was observed for preceding vowels, approximants, and nasals, targeted approximants and nasals,

as well as vowel–vowel, fricative–fricative, approximant–fricative, and nasal–approximant se-

quences. Significantly better precisionwas found for targeted fricatives, vowel–nasal, approximant–

nasal, nasal–vowel, nasal–nasal, fricative–vowel, fricative–nasal, stop–vowel, and stop–nasal se-

quences.

For Evenki, the Global English model outperformed all language-specific models and American

English models with respect to precision. As with Urum, longer utterance durations corresponded

to significantly worse precision (Figure 4b), as did greater amounts of bracketed material within the

input utterance. Several main effects and interactions of the targeted and preceding natural classes

were also observed. Similar to Urum, preceding vowels, approximants, and nasals, as well as

targeted approximants corresponded to significantly worse precision of the boundary. In contrast

to Urum, targeted fricatives as well as preceding fricatives corresponded to significantly worse

precision in Evenki. Significantly lower precision was also observed for vowel–vowel, nasal–

nasal, vowel–nasal, and stop–nasal sequences. Significantly better precision was observed for

targeted vowels, targeted nasals, as well as vowel–approximant, vowel–fricative, approximant–

approximant, nasal–fricative, stop–vowel, and stop–fricative sequences.

<FIGURE 2>

<FIGURE 3>

<FIGURE 4>

8The full model results for Urum and Evenki precision can be found in the Appendix.
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4.3 Accuracy

For both Urum and Evenki, accuracy of each acoustic model strongly mirrored the corresponding

precision. Whereas precision corresponded to how far the gold-aligned boundary was from the

force-aligned boundary, alignment accuracy reflected whether the force-aligned interval contained

the midpoint of the gold interval, indicating a general accuracy of location for a given segment.

The language-specific and cross-language acoustic models were overall similar in accuracy, with

the primary exceptions of the 5-minute language-specific models, and for Evenki, the 10- and

15-minute models as well (Figure 5). The top three acoustic models always included the Global

English model, the full language-specific model, and the median-performing 25-min model.

The pattern of significance observed in the logistic mixed-effects models for both Urum and Evenki

was largely comparable to the pattern observed for precision. For Urum, the full language-specific

model significantly outperformed the Global English model; otherwise, the Global English model

significantly outperformed all other language-specific and cross-language models. Increased utter-

ance durations and higher contamination proportions (bracketed material per utterance) also cor-

responded to significantly worse accuracy. Significantly worse accuracy was also associated with

preceding vowels, approximants, and nasals, as well as targeted vowels, approximants, and nasals.

Preceding and targeted fricatives, however, corresponded to significantly better accuracy.

For Evenki, the Global English model significantly outperformed all language-specific and cross-

language models in terms of accuracy. As with Urum, longer utterance durations and higher con-

tamination proportions corresponded to significantly decreased accuracy. Preceding vowels, ap-

proximants, nasals, as well as targeted approximants were also associated with decreased accu-

racy. In contrast to Urum, significantly worse accuracy was associated with preceding and targeted

fricatives, whereas significantly better accuracy was associated with preceding stops and targeted

vowels.

<FIGURE 5>

5 Discussion

Phonetic forced alignment of very low resource languages can present a challenge to researchers: is

it worth training a language-specific acoustic model, or should a substitute cross-language acoustic

model be used instead? The present study indicates that both paths may be viable, but with a few

nuances. First, language-specific acoustic models can be successful with a small, but sufficient

amount of data. Based on the results of the present study, the median-performing language-specific

acoustic models with approximately 25 minutes of training data reached near-ceiling performance

on the measures tested here. (Note that the 25 minutes refers to actual speech, as opposed to just

recording duration.) A noticeable drop in performance was consistently observed with only five

minutes of language-specific training data, and to a lesser degree with ten minutes of training data.

The only cross-language acoustic model to consistently outperform the small language-specific
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models was the large-scale Global English acoustic model. Otherwise, the more homogeneous

American English models—even with 10 or 100 hours of training data—did not perform as well as

a median-performing 25-min model in either of the languages tested. That said, the cross-language

models were still competitive with the language-specific models. Indeed, the full language-specific

model was always near- or at-ceiling in its performance against the other tested models.

Nevertheless, ceiling performance in the cross-language or low-resource forced alignment approach

was not remarkably high. With respect to boundary agreement within 20ms, the highest percentage

was 69% for Urum from the full model with 70+ minutes (66% for the Global English model)

and 60% for Evenki from the Global English model (52% for the full model with 70+ minutes).

Overall, alignment of Urum was numerically better than that of Evenki, which we suspect might

be attributable to the better sound quality in the training and test data. Urum otherwise had slightly

longer input utterance durations and greater amounts of false starts or foreign material relative to

Evenki. In any case, comparison with similar cross-language or low-resource forced alignment

studies suggests this range of performances may be on par with other results, especially taking into

consideration that the speech here was connected as opposed to isolated. In cross-language forced

alignment, DiCanio et al. (2013) reported a 61% agreement within 20 ms for Yoloxóchitl Mixtec

connected speech using an American English Nemours SRL aligner (Yarrington et al. 2008) and

52% using the Penn Phonetics Lab Forced Aligner also trained on American English (Yuan &

Liberman 2008). In addition, Kempton (2017) found a 66% agreement within 20 ms for Nikyob

isolated words using a Czech phone recognizer. In low-resource forced alignment, Johnson et al.

(2018) achieved 63%–71% agreement within 20 ms for Tongan speech using an acoustic model

trained on one hour of data using the ProsodyLab-Aligner (Gorman et al. 2011).

Overall, training a language-specific model with just 25 minutes of speech data was preferable to

using a homogeneous cross-language model. Even though the American English models had con-

siderably more training data than the language-specific ones, the homogeneity of the training data

and its mismatch to the target language likely resulted in weaker alignment performance. It could

be that American English specifically was a poor match for Urum and Evenki; further research

should investigate how overlap between two languages’ phoneme inventories and acoustics could

influence results. Indeed, previous research has demonstrated worse alignment for phones without

a one-to-one match in the cross-language setup (DiCanio et al. 2013; Babinski et al. 2019; Meer

2020). Moreover, researchers may benefit from using a large and diverse acoustic model, such as

the Global English model used here for forced alignment. This model was always in the top two

tested models, in both languages and for each tested measure.

Phonetic forced alignment can be further improved by minimizing the input utterance duration and

appropriately handling the presence of foreign, non-speech, and other extraneous material. Ceiling

performance was not always particularly high, indicating a need for alternative approaches to im-

prove retention, precision, and accuracy. Reducing the input interval duration, removing foreign

speech or non-speech intervals, and recursive forced alignment approaches would likely improve

the overall performance of the forced alignment procedure. Previous studies have demonstrated

that recursive forced alignment can substantially improve alignment quality by automatically or

semi-automatically reducing lengthy input durations into shorter and shorter intervals (Moreno
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et al. 1998; Gonzalez et al. 2018; Barth et al. 2020). The shorter aligned intervals are then re-

cursively fed back into the forced alignment procedure for more precise alignments. Indeed, the

present study found a significant influence of input utterance duration on the alignment quality in

terms of precision for Evenki and accuracy for both Urum and Evenki.

Given the success of the large, multidialectal acoustic model tested here, these findings also reveal a

need to test trulymultilingual models of varying training data sizes for low-resource phonetic forced

alignment. Multilingual and language-independent acoustic models show considerable promise but

have had limited availability. Strunk et al. (2014) included a multilingual model in their release of

WebMAUS, which has successfully been used to force align fieldwork recordings in the DoReCo

Corpus (Paschen et al. 2020b). The acoustic models employed in the present study did not allow

us to deconfound multilinguality (or the presence of diverse accents) from the amount of training

data: the large Global English model was trained on an incredibly large amount of data (around

3700 hours) from quite varied accents. It also remains to be seen if a single language acoustic

model with considerably more data, e.g., with thousands of hours, could offer a better alternative

than a multilingual model of similar size, particularly if the language similarity is high.

In most fieldwork scenarios, however, large quantities of data are just not available. Relatedly,

these recordings commonly involve conversations with code-switching, as was the case in the

present study. Whether to use code-switched speech for acoustic model training is another impor-

tant topic for future work. The present study did employ such instances in training, but excluded

these for testing. Our speculation is that given the importance of data quantity, it would likely be

helpful to include phone categories that overlap between the code-switched and target language,

as it would further increase the sample size. An additional point of consideration is the degree to

which the recording and speech styles match between the train and test sets, which was relatively

high in the present study.

Finally, it will also be important to investigate how newer end-to-end systems such as wav2vec 2.0

(Baevski et al. 2020) or Whisper (Radford et al. 2023) perform against HMM systems that have

an explicit representation of a phone. Some work in this direction has found that HMM systems

largely outperform systems based on wav2vec 2.0 for word-level alignment (Biczysko 2022), as

well as phone-level alignment (Zhu et al. 2022), though the end-to-end approach is still competitive.

Further investigating the potential of these systems will be important avenues of research for speech

processing and analysis of low-resource languages.

6 Recommendations & Conclusion

Our first recommendation for phonetic forced alignment of low-resource languages is to use the

large Global English acoustic model (or one that is similar) or a language-specific acoustic

model with at least 25 minutes of speech, assuming the MFA or a comparable procedure is used

for acoustic model training. This also assumes that the language-specific training data matches

the style and general recording environment of the test data. The large Global English model was
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consistently competitive with the best-performing language-specific models of the durations tested

here. This appears to be a highly reliable model for cross-language forced alignment. In addition,

language-specific acoustic models with at least 25 minutes of speech data tended to perform near-

ceiling for forced alignment. We must note, however, that we only tested the median-performing

models from our initial pilot study, and it is still very possible that one gets unlucky with a particular

25-minute sample. Cross-language acoustic models trained on a relatively homogeneous dataset

are unlikely to perform as well as an acoustic model trained directly on the language (assuming at

least 25 minutes) or a large and highly diverse acoustic model.

Our second recommendation for phonetic forced alignment more generally is to ensure a short input

utterance. As a heuristic, we recommend an input utterance less than six seconds, and ideally

less than two seconds. In our data, precision generallyworsenedwith increased duration, but as can

be seen in Figure 4, alignments could be considerably further off after around 6 seconds. Reducing

the input utterance duration can involve a trade-off between manual and automatic processing, but

the longer the utterance, the more numerous the errors are that then need to be manually corrected

after alignment. Sequences of abnormally low segment durations could also be indicative of a

poor alignment; it may be beneficial to target these sequences during manual auditing. For low-

resource alignment, recursive alignment to narrow the input utterance duration may also be worth

the additional effort for increased precision and accuracy.

To conclude, phonetic forced alignment can substantially facilitate downstream analysis of a spo-

ken language corpus. For languages with no pretrained acoustic model, it has been unclear whether

to proceed in phone-level forced alignment using cross-language forced alignment or to train a

language-specific acoustic model on the available language-specific data. Our findings indicate

that several factors can influence this decision, and results may still vary; however, performance

appears to reach ceiling with either a large and diverse multidialectal model (e.g., the large Global

English acoustic model) or with a language-specific acoustic model with at least 25 minutes of

speech (and not just audio) with comparable style and recording quality. Additional factors such

as reducing the input utterance duration can further improve performance. This method was im-

plemented using the MFA; however, a comparison between cross-language and language-specific

forced alignment could be extended to any forced alignment system. Further comparisons with

multilingual acoustic models or even larger language-specific models could also benefit our under-

standing of best practices in crosslinguistic forced alignment. As always, the output of automatic

phonetic forced alignment should ideally be audited prior to any analysis.
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8 Figures and Tables

Urum phones that stayed the same Urum phones that were

mapped to English phones

a, æ, b, c, d, dʒ, e, f, ɡ, i, j, ɟ, k, l, dː to d, ɣ to h, lː to l, mː tom,

ɫ,m, n, o, p, ɾ, s, ʃ, t, tʃ, u, v, z, ʒ œ to o, r to ɹ, sː to s, tː to t,

ɯ to u, x to h, y to u

Table 1: Phone mapping for Urum with the English model

Evenki phones that stayed the same Evenki phones that were mapped

to English phones

a, aː, b, d, e, ə, f, ɡ, h, i, iː, j, k, l, tʲ to c, eː to e, əː to ə, ɣ to h, dʲ to ɟ,

m, n, ŋ, o, p, s, ʃ, t, tʃ, u, v, w, z, ʒ lʲ to l, nʲ to ɲ, oː to o, r to ɹ, sʲ to ʃ,

ʃʲ to ʃ, uː to u, ʉ to u

Table 2: Phone mapping for Evenki with the English model

Model Min Median Max

5 min 1 71 401

10 min 5 156 899

15 min 1 248 1465

20 min 1 248 1465

25 min 9 401 2187

70+ min 34 1100 6632

Table 3: Minimum, median, and maximum number of phone-specific training tokens for each

Urum language-specific acoustic model. Though the 15-min and 20-min models have the same

presented statistics, the distributions were indeed different

Model Min Median Max

5 min 1 50 369

10 min 3 125 699

15 min 1 184 1161

20 min 3 219 1727

25 min 2 236 1494

70+ min 20 776.5 5144

Table 4: Minimum, median, and maximum number of phone-specific training tokens for each

Evenki language-specific acoustic model
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Figure 1: Segment retention as a percentage of the total number of gold segments for each acoustic

model in a) Urum and b) Evenki.
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Figure 2: Median and interquartile range of boundary differences in seconds for each tested acoustic

model in a) Urum and b) Evenki.
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Figure 3: The percent of force-aligned test boundaries within 20 ms of the gold test boundary for

each tested acoustic model in a) Urum and b) Evenki.
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Figure 4: The relationship between precision (mean boundary difference in seconds) and input

utterance duration in seconds across the tested acoustic models in a) Urum and b) Evenki. The

x-axis has been truncated to 10 sec for better visibility.
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Figure 5: Accuracy in identifying the aligned segment location relative to the gold segment location

for each acoustic model in a) Urum and b) Evenki.
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Predictors Estimates CI p

Intercept -4.86 -5.00 – -4.72 <0.001

70+ min -0.10 -0.16 – -0.04 <0.001

25 min 0.14 0.09 – 0.20 <0.001

20 min 0.30 0.24 – 0.36 <0.001

15 min 0.29 0.23 – 0.34 <0.001

10 min 0.74 0.68 – 0.80 <0.001

5 min 1.58 1.52 – 1.64 <0.001

American English 100 hr 0.68 0.62 – 0.73 <0.001

American English 10 hr 0.35 0.29 – 0.40 <0.001

American English 70+ min 0.55 0.49 – 0.60 <0.001

Utterance duration (hs) 2.12 1.56 – 2.68 <0.001

Contamination amount 0.51 0.42 – 0.59 <0.001

Preceding vowel 0.43 0.37 – 0.49 <0.001

Preceding approximant 0.54 0.43 – 0.64 <0.001

Preceding nasal 0.29 0.23 – 0.35 <0.001

Preceding fricative 0.04 -0.10 – 0.17 0.587

Preceding stop 0.09 -0.00 – 0.17 0.060

Vowel -0.07 -0.16 – 0.02 0.116

Approximant 0.19 0.06 – 0.31 0.003

Nasal 0.09 0.01 – 0.18 0.026

Fricative -0.23 -0.35 – -0.12 <0.001

Prec vowel × vowel 0.19 0.08 – 0.30 0.001

Prec vowel × approx 0.05 -0.09 – 0.20 0.460

Prec vowel × nasal -0.11 -0.20 – -0.01 0.023

Prec vowel × fric -0.05 -0.18 – 0.08 0.440

Prec approx × vowel -0.02 -0.16 – 0.11 0.723

Prec approx × approx -0.21 -0.47 – 0.06 0.126

Prec approx × nasal -0.25 -0.39 – -0.11 <0.001

Prec approx × fric 0.29 0.02 – 0.55 0.037

Prec nasal × vowel -0.14 -0.24 – -0.04 0.005

Prec nasal × approx 0.14 0.00 – 0.28 0.042

Prec nasal × nasal -0.17 -0.26 – -0.08 <0.001

Prec nasal × fric -0.04 -0.18 – 0.09 0.553

Prec fric × vowel -0.57 -0.74 – -0.41 <0.001

Prec fric × nasal -0.51 -0.68 – -0.35 <0.001

Prec fric × fric 1.03 0.65 – 1.42 <0.001

Prec stop × vowel -0.40 -0.52 – -0.28 <0.001

Prec stop × approx 0.09 -0.11 – 0.29 0.365

Prec stop × nasal -0.29 -0.41 – -0.17 <0.001

Prec stop × fric -0.10 -0.29 – 0.10 0.339

Table 5: Linear mixed-effects model results for boundary difference (log seconds) in Urum. Each

listed model is compared to the Global English 3700 hr model. Utterance duration was entered as

hectoseconds (hs) for model convergence (seconds / 100). Preceding and targeted natural class is

sum-coded, such that the listed level can be compared to the average. For preceding natural class,

the held-out level is silence; for targeted natural class, the held-out level is stops.
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Predictors Estimates CI p

Intercept -4.67 -4.88 – -4.47 <0.001

70+ min 0.22 0.17 – 0.28 <0.001

25 min 0.31 0.26 – 0.37 <0.001

20 min 0.43 0.38 – 0.49 <0.001

15 min 0.99 0.93 – 1.04 <0.001

10 min 1.63 1.57 – 1.69 <0.001

5 min 2.07 2.01 – 2.13 <0.001

American English 100 hr 0.91 0.85 – 0.96 <0.001

American English 10 hr 0.49 0.44 – 0.55 <0.001

American English 70+ min 0.61 0.55 – 0.66 <0.001

Utterance duration (hs) 5.72 5.07 – 6.37 <0.001

Contamination amount 0.01 -0.00 – 0.02 0.060

Preceding vowel 0.39 0.32 – 0.46 <0.001

Preceding approximant 0.60 0.47 – 0.72 <0.001

Preceding nasal 0.27 0.15 – 0.40 <0.001

Preceding fricative 0.35 0.14 – 0.56 0.001

Preceding stop -0.04 -0.17 – 0.10 0.606

Vowel -0.15 -0.23 – -0.07 <0.001

Approximant 0.73 0.52 – 0.93 <0.001

Nasal -0.20 -0.31 – -0.09 <0.001

Fricative 0.21 0.11 – 0.32 <0.001

Prec vowel × vowel 0.39 0.27 – 0.52 <0.001

Prec vowel × approx -0.61 -0.82 – -0.41 <0.001

Prec vowel × nasal 0.15 0.03 – 0.26 0.012

Prec vowel × fric -0.27 -0.40 – -0.14 <0.001

Prec approx × vowel 0.04 -0.10 – 0.18 0.583

Prec approx × approx -0.56 -0.81 – -0.31 <0.001

Prec approx × nasal -0.11 -0.41 – 0.19 0.477

Prec approx × fric 0.14 -0.20 – 0.47 0.429

Prec nasal × vowel -0.01 -0.14 – 0.13 0.930

Prec nasal × approx -0.39 -0.81 – 0.02 0.064

Prec nasal × nasal 0.49 0.32 – 0.65 <0.001

Prec nasal × fric -0.35 -0.58 – -0.12 0.003

Prec fric × vowel -0.21 -0.42 – 0.01 0.064

Prec fric × nasal -0.08 -0.50 – 0.35 0.730

Prec fric × fric -0.15 -0.61 – 0.31 0.524

Prec stop × vowel -0.30 -0.45 – -0.15 <0.001

Prec stop × approx -0.39 -0.82 – 0.05 0.080

Prec stop × nasal 0.50 0.23 – 0.77 <0.001

Prec stop × fric -0.85 -1.11 – -0.59 <0.001

Table 6: Linear mixed-effects model results for boundary difference (log seconds) in Evenki. Each

listed model is compared to the Global English 3700 hr model. Utterance duration was entered as

hectoseconds (hs) for model convergence (seconds / 100). Preceding and targeted natural class is

sum-coded, such that the listed level can be compared to the average. For preceding natural class,

the held-out level is silence; for targeted natural class, the held-out level is stops.
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Predictors Log-Odds CI p

Intercept 1.88 1.70 – 2.07 <0.001

70+ min 0.19 0.09 – 0.28 <0.001

25 min -0.04 -0.13 – 0.06 0.469

20 min -0.25 -0.34 – -0.15 <0.001

15 min -0.24 -0.34 – -0.15 <0.001

10 min -1.13 -1.22 – -1.04 <0.001

5 min -2.05 -2.14 – -1.96 <0.001

American English 100 hr -1.01 -1.10 – -0.92 <0.001

American English 10 hr -0.61 -0.70 – -0.52 <0.001

American English 70+ min -0.74 -0.83 – -0.65 <0.001

Utterance duration (hs) -1.24 -2.08 – -0.41 0.004

Contamination amount -0.49 -0.61 – -0.37 <0.001

Preceding vowel -0.36 -0.45 – -0.28 <0.001

Preceding approximant -0.16 -0.27 – -0.05 0.003

Preceding nasal -0.13 -0.21 – -0.05 0.002

Preceding fricative 0.33 0.23 – 0.44 <0.001

Preceding stop 0.05 -0.04 – 0.14 0.308

Vowel -0.08 -0.12 – -0.04 <0.001

Approximant -0.83 -0.89 – -0.77 <0.001

Nasal -0.24 -0.27 – -0.20 <0.001

Fricative 0.86 0.78 – 0.93 <0.001

Table 7: Logistic mixed-effects model results for accuracy in Urum. Accuracy was defined as 1

if the force aligned segments that contained the midpoint of the manually aligned segment. Each

listed model is compared to the Global English 3700 hr model. Utterance duration was entered as

hectoseconds (hs) for model convergence (seconds / 100). Preceding and targeted natural class is

sum-coded, such that the listed level can be compared to the average. For preceding natural class,

the held-out level is silence; for targeted natural class, the held-out level is stops.
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Predictors Log-Odds CI p

Intercept 1.66 1.50 – 1.82 <0.001

70+ min -0.43 -0.52 – -0.34 <0.001

25 min -0.50 -0.59 – -0.42 <0.001

20 min -0.79 -0.87 – -0.71 <0.001

15 min -1.51 -1.59 – -1.42 <0.001

10 min -2.23 -2.31 – -2.14 <0.001

5 min -2.58 -2.67 – -2.48 <0.001

American English 100 hr -1.30 -1.38 – -1.22 <0.001

American English 10 hr -0.90 -0.99 – -0.82 <0.001

American English 70+ min -1.00 -1.08 – -0.92 <0.001

Utterance duration (hs) -1.69 -2.42 – -0.95 <0.001

Contamination amount -0.21 -0.31 – -0.11 <0.001

Preceding vowel -0.25 -0.32 – -0.18 <0.001

Preceding approximant -0.62 -0.70 – -0.54 <0.001

Preceding nasal -0.37 -0.45 – -0.29 <0.001

Preceding fricative -0.28 -0.39 – -0.17 <0.001

Preceding stop 0.12 0.05 – 0.20 0.002

Vowel 0.22 0.17 – 0.26 <0.001

Approximant -0.62 -0.67 – -0.57 <0.001

Nasal -0.07 -0.11 – -0.03 0.001

Fricative -0.18 -0.24 – -0.11 <0.001

Table 8: Logistic mixed-effects model results for accuracy in Evenki. Accuracy was defined as 1

if the force aligned segments that contained the midpoint of the manually aligned segment. Each

listed model is compared to the Global English 3700 hr model. Utterance duration was entered as

hectoseconds (hs) for model convergence (seconds / 100). Preceding and targeted natural class is

sum-coded, such that the listed level can be compared to the average. For preceding natural class,

the held-out level is silence; for targeted natural class, the held-out level is stops.
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