Corpus Phonetics Tutorial
Eleanor Chodroff
Core content written: 2015 | Updated: 2018-11-13

Contents

1 Introduction

2 Kaldi
2.1 OVerview
2.2 Imstallation e
2.3 Familiarization Lo
2.4 Training Overview o e e e e
2.5 Training Acoustic Models L e
2.6 Forced Alignment
3 FAVE-align
3.1 Overview e
3.2 Imstallation L
3.3 Running the aligner
4 Montreal Forced Aligner
4.1 OVerview e e
4.2 Setup
4.3 Grapheme-to-phoneme modelso
4.4 Running the aligner L
4.5 Tipsand tricks L e
5 Penn Forced Aligner (Legacy)
5.1 OVErview e
5.2 Prerequisiteso e
5.3 Modifying the lexicon L e
5.4 Running the aligner e
6 AutoVOT
6.1 Overview
6.2 Recipe o e

7 Other resources

27
27
27
29
29
30

31
31
31
32
33

35
35
35

41

CONTENTS

Chapter 1

Introduction

Corpus phonetics has become an increasingly popular method of research in linguistic analysis. With ad-
vances in speech technology and computational power, large scale processing of speech data has become
a viable technique. A fair number of researchers have exploited these methods, yet these techniques still
remain elusive for many. In the words of Mark Liberman, there has been “surprisingly little change in style
and scale of [phonetic] research” from 1966 on, implying that the field still relies on small sample sizes of
speech data (2009). While “big data” phonetics is not the be-all and end-all of phonetic research, larger
sample sizes ensure more statistically sound conclusions about phonetic values in an individual or population.
Furthermore, corpus research is not synonymous with big data. Rather, corpus phonetics describes a method
of processing speech data with advantages primarily gained in its computational power (relation to big data)
and efficiency. The methods and tools developed for corpus phonetics are based on engineering algorithms
primarily from automatic speech recognition (ASR), as well as simple programming for data manipulation.
This tutorial aims to bring some of these tools to the non-engineer, and specifically to the speech scientist.

Acoustic analysis programs such as Praat, MATLAB, and R (check out the tuneR and multitaper packages)
are already capable of large scale phonetic measurement via their respective scripting languages. While the
tutorial covers some phonetic processing in Praat, the primary aim is to introduce supplementary tools to
phonetic processing. These tools are based on concepts and algorithms from automatic speech recognition,
which allow for automatic alignment of phonetic boundaries to the speech signal.

In particular, the tutorial currently covers various tools from the Kaldi Automatic Speech Recognition Toolki,
FAVE-align, the Montreal Forced Aligner, Penn Phonetics Lab Forced Aligner, and AutoVOT. (The docu-
mentation for the Penn Forced Aligner is marked as “legacy” as this system has essentially been replaced
by FAVE-align.) Kaldi is an automatic speech recognition toolkit that provides the infrastructure to build
personalized acoustic models and forced alignment systems. Acoustic models are the statistical repre-
sentations of each phoneme’s acoustic information. The “personalized” component means that this system
is capable of modeling any corpus of speech, be it British English, Southern American English, Hungarian,
or Korean. It additionally houses many speech processing algorithms, which may be of use to the speech
scientist. This tutorial will cover acoustic model training and forced alignment in Kaldi; however, the toolkit
as a whole provides exceptional potential for phonetic research. “Forced alignment” is the automatic synchro-
nization of a sequence of phones with an audio file. This process employs acoustic models of the sounds
of a language, along with a pronunciation lexicon which provides a canonical mapping from orthographic
words to sequences of phones. Forced alignment greatly expedites data processing and phonetic measurement.
Kaldi, FAVE-align, and the Montreal Forced Aligner are all capable of forced alignment, but with varying
degrees of flexibility with respect to the input speech. Finally, AutoVOT is an automatic voice onset time
(VOT) measurement tool that demarcates the burst release and vocalic onset of word-initial, prevocalic stop
consonants.

Finally, the tutorial assumes basic familiarity with Praat, as well as a Mac operating system, primarily for
the default bash/Unix shell in the Terminal application. If using a PC, I recommend downloading Cygwin

http://www.fon.hum.uva.nl/praat/
http://www.mathworks.com/products/matlab/
https://www.r-project.org/about.html
http://www.fon.hum.uva.nl/praat/
https://www.cygwin.com/

6 CHAPTER 1. INTRODUCTION

for running bash/Unix commands. For AutoVOT and the Penn Forced Aligner, most of the Unix commands
are provided in the tutorial itself. While I try to provide as many of the commands as possible, Kaldi
requires more fluency in shell scripting. If you have not used the Terminal application before, I recommend
looking over some basic Unix commands online (Google is every programmer’s best friend). For a list of
the most useful commands, I recommend this website. For more details regarding the argument structure, I
recommend this website.

Each section covers the prerequisites for each program’s installation, as well as a standard recipe for each
program. As a good rule of thumb, all prerequisites should be installed prior to installation of the desired
program.

Citations for each of the programs can be found below:
o Kaldi

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P.,
Qian, Y., Schwartz, P., Silovsky, J., Stemmer, G., & Vesely, K. (2011). The Kaldi speech recognition toolkit.
In IEEE 2011 Workshop on ASRU.

Q@INPROCEEDINGS{
Povey_ASRU2011,
author = {Povey, Daniel and Ghoshal, Arnab and Boulianne, Gilles and
Burget, Lukas and Glembek, Ondrej and Goel, Nagendra and
Hannemann, Mirko and Motlicek, Petr and Qian, Yanmin and
Schwarz, Petr and Silovsky, Jan and Stemmer, Georg and Vesely, Karell,
keywords = {ASR, Automatic Speech Recognition, GMM, HTK, SGMM},
month = dec,
title = {The Kaldi Speech Recognition Toolkit},
booktitle = {IEEE 2011 Workshop on Automatic Speech Recognition and Understanding},
year = {2011},
publisher = {IEEE Signal Processing Society},
location = {Hilton Waikoloa Village, Big Island, Hawaii, US},
note = {IEEE Catalog No.: CFP11SRW-USB},

o FAVE-align

Rosenfelder, Ingrid; Fruehwald, Josef; Evanini, Keelan; Seyfarth, Scott; Gorman, Kyle; Prichard, Hilary;
Yuan, Jiahong; 2014. FAVE (Forced Alignment and Vowel Extraction) Program Suite v1.2.2 10.5281/zen-
0do.22281

e Montreal Forced Aligner

McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger (2017).
Montreal Forced Aligner [Computer program]. Version 0.9.0, retrieved 17 January 2017 from http://
montrealcorpustools.github.io/Montreal-Forced- Aligner/.

e Penn Phonetics Lab Forced Aligner

Yuan, Jiahong., & Liberman, Mark. (2008). Speaker identification on the SCOTUS corpus. In Proceedings
of Acoustics, '08.

e AutoVOT

Keshet, J., Sonderegger, M., Knowles, T. (2014). AutoVOT: A tool for automatic measurement of voice
onset time using discriminative structured prediction [Computer program]. Version 0.91, retrieved August
2014 from https://github.com/mlml/autovot/.

http://www.tutorialspoint.com/unix/unix-useful-commands.htm
https://kb.iu.edu/d/afsk
http://montrealcorpustools.github.io/Montreal-Forced-Aligner/
http://montrealcorpustools.github.io/Montreal-Forced-Aligner/
https://github.com/mlml/autovot/

Chapter 2

Kaldi

2.1 Overview

What is Kaldi? Kaldi is a state-of-the-art automatic speech recognition (ASR) toolkit, containing almost
any algorithm currently used in ASR systems. It also contains recipes for training your own acoustic models
on commonly used speech corpora such as the Wall Street Journal Corpus, TIMIT, and more. These recipes
can also serve as a template for training acoustic models on your own speech data.

What are acoustic models? Acoustic models are the statistical representations of a phoneme’s acoustic
information. A phoneme here represents a member of the set of speech sounds in a language. N.B., this use
of the term ‘phoneme’ only loosely corresponds to the linguistic use of the term ‘phoneme’.

The acoustic models are created by training the models on acoustic features from labeled data, such as the
Wall Street Journal Corpus, TIMIT, or any other transcribed speech corpus. There are many ways these
can be trained, and the tutorial will try to cover some of the more standard methods. Acoustic models are
necessary not only for automatic speech recognition, but also for forced alignment.

Kaldi provides tremendous flexibility and power in training your own acoustic models and forced alignment
system. The following tutorial covers a general recipe for training on your own data. This part of the tutorial
assumes more familiarity with the terminal; you will also be much better off if you can program basic text
manipulations.

Please also refer to the Kaldi website for thorough documentation.

2.2 Installation

Please refer to http://www.kaldi-asr.org/doc/install.html for more details.
1. Prerequisites
o Git

Git is a version control system that let’s developers update source code and easily redistribute updates to
the users. Git can be installed via homebrew or following instructions here.

o Subversion (svn)

Subversion is also a version control system that keeps track of individual changes while developing the source
code. Some of the example scripts still depend on this package.

2. Downloading

http://www.kaldi-asr.org/doc/
http://www.kaldi-asr.org/doc/install.html
https://git-scm.com/book/en/v1/Getting-Started-Installing-Git
https://en.wikipedia.org/wiki/Revision_control

8 CHAPTER 2. KALDI

It is recommended that Kaldi be installed on a machine with good computing power. Following the instruc-
tions for downloading Kaldi on this page: http://kaldi-asr.org/doc/install.html, first direct the terminal to
where you would like to install Kaldi, and then type the following:

git clone https://github.com/kaldi-asr/kaldi.git kaldi --origin upstream

3. Installation

Locate the file INSTALL in the downloaded package and follow the instructions there. In short, you’ll need to
follow the install instructions in kaldi/tools and then in kaldi/src. The most typical installation should
involve the following code, but read the INSTALL file just in case:

cd kaldi/tools
extras/check_dependencies.sh
make

cd kaldi/src
./configure
make depend
make

2.3 Familiarization

This section serves as a cursory overview of Kaldi’s directory structure. The top-level directories are egs,
src, tools, misc, and windows. The directories we will be using are egs and src.

egs stands for ‘examples’ and contains example training recipes for most major speech corpora. Training
recipes are available for the Wall Street Journal Corpus (wsj), TIMIT (timit), Resource Management (rm),
and many others. Under each of these directories are usually a few different versions (s3, s4, s5, etc.) The
highest number, usually s5, is the most current version and should be used for any new development or
training. The older versions are kept for archival purposes only.

src stands for ‘source’ or ‘source code’ and contains most of the source code for programs that the training
recipes call.

For each training recipe directory, there is a standard sub-directory structure. This is best exemplified in
the Resource Management directory (egs/rm/s5). The top directory contains the run script (run.sh), as
well as two other required scripts (cmd.sh and path.sh). The sub-directories are conf (configuration), data,
exp (experiments), local, steps, and utils (utilities). The directories we will primarily be using are data
and exp. The data directory will eventually house information relevant to your own data such as transcripts,
dictionaries, etc. The exp directory will eventually contain the output of the training and alignment scripts,
or the acoustic models.

2.4 Training Overview

Before diving into the scripts, it is essential to understand the basic procedure for training acoustic models.
Given the audience and purpose of the tutorial, this section will focus on the process as opposed to the
computation (see Jurafsky and Martin 2008, Young 1996, among many others). The procedure can be laid
out as follows:

1. Obtain a written transcript of the speech data
For a more precise alignment, utterance (~sentence) level start and end times are helpful, but not necessary.

2. Format transcripts for Kaldi

http://kaldi-asr.org/doc/install.html
http://www.amazon.com/Speech-Language-Processing-Daniel-Jurafsky/dp/0131873210/ref=sr_1_1?s=books&ie=UTF8&qid=1435870892&sr=1-1&keywords=speech+and+language+processing&pebp=1435870888175&perid=0HS6VNBZX7NEZN1NTCX2
https://ieeexplore.ieee.org/abstract/document/536824/

2.4. TRAINING OVERVIEW

example \

directory
structure

utils

Scripts and Files

Jexicon.xt

-nonsilence_phones.txt -COV.IXt

-optional_silence.txt
-silence_phones.txt

-extra_guestions.txt

: . . et cetera
WS) timit
55 Scripts and Files
-path.sh
-run.sh
-cmd.sh
-nohup.out
steps
data local
lang train
Seripts and Files Seripts and Files
L_disambig fst ~CIMVILSCP
L.fst -feats.scp
-Dﬂvjnt =E ECP
-segments
'Phﬂﬂﬂﬁ -Text
-phones.txt “words. txt
-tOpo -spk2utt
-words. tt -uttZspk

Figure 2.1: Example directory structure

10 CHAPTER 2. KALDI

Kaldi requires various formats of the transcripts for acoustic model training. You’ll need the start and end
times of each utterance, the speaker ID of each utterance, and a list of all words and phonemes present in
the transcript.

3. Extract acoustic features from the audio

Mel Frequency Cepstral Coefficients (MFCC) are the most commonly used features, but Perceptual Linear
Prediction (PLP) features and other features are also an option. These features serve as the basis for the
acoustic models.

4. Train monophone models

A monophone model is an acoustic model that does not include any contextual information about the
preceding or following phone. It is used as a building block for the triphone models, which do make use of
contextual information.

*Note: from this point forward, we will be assuming a Gaussian Mixture Model/Hidden Markov Model
(GMM/HMM) framework. This is in contrast to a deep neural network (DNN) system.

5. Align audio with the acoustic models

The parameters of the acoustic model are estimated in acoustic training steps; however, the process can
be better optimized by cycling through training and alignment phases. This is also known as Viterbi
training (related, but more computationally expensive procedures include the Forward-Backward algorithm
and Expectation Maximization). By aligning the audio to the reference transcript with the most current
acoustic model, additional training algorithms can then use this output to improve or refine the parameters
of the model. Therefore, each training step will be followed by an alignment step where the audio and text
can be realigned.

6. Train triphone models

While monophone models simply represent the acoustic parameters of a single phoneme, we know that
phonemes will vary considerably depending on their particular context. The triphone models represent a
phoneme variant in the context of two other (left and right) phonemes.

At this point, we'll also need to deal with the fact that not all triphone units are present (or will ever
be present) in the dataset. There are (# of phonemes)® possible triphone models, but only a subset of
those will actually occur in the data. Furthermore, the unit must also occur multiple times in the data
to gather sufficient statistics for the data. A phonetic decision tree groups these triphones into a smaller
amount of acoustically distinct units, thereby reducing the number of parameters and making the problem
computationally feasible.

7. Re-align audio with the acoustic models & re-train triphone models

Repeat steps 5 and 6 with additional triphone training algorithms for more refined models. These typi-
cally include delta+delta-delta training, LDA-MLLT, and SAT. The alignment algorithms include speaker
independent alignments and FMLLR.

e Training Algorithms

Delta+delta-delta training computes delta and double-delta features, or dynamic coefficients, to supple-
ment the MFCC features. Delta and delta-delta features are numerical estimates of the first and second
order derivatives of the signal (features). As such, the computation is usually performed on a larger window
of feature vectors. While a window of two feature vectors would probably work, it would be a very crude
approximation (similar to how a delta-difference is a very crude approximation of the derivative). Delta
features are computed on the window of the original features; the delta-delta are then computed on the
window of the delta-features.

LDA-MLLT stands for Linear Discriminant Analysis — Maximum Likelihood Linear Transform. The Linear
Discriminant Analysis takes the feature vectors and builds HMM states, but with a reduced feature space
for all data. The Maximum Likelihood Linear Transform takes the reduced feature space from the LDA and

2.5. TRAINING ACOUSTIC MODELS 11

derives a unique transformation for each speaker. MLLT is therefore a step towards speaker normalization,
as it minimizes differences among speakers.

SAT stands for Speaker Adaptive Training. SAT also performs speaker and noise normalization by adapting
to each specific speaker with a particular data transform. This results in more homogenous or standardized
data, allowing the model to use its parameters on estimating variance due to the phoneme, as opposed to
the speaker or recording environment.

e Alignment Algorithms

The actual alignment algorithm will always be the same; the different scripts accept different types of acoustic
model input.

Speaker independent alignment, as it sounds, will exclude speaker-specific information in the alignment
process.

fMLLR stands for Feature Space Maximum Likelihood Linear Regression. After SAT training, the acoustic
model is no longer trained on the original features, but on speaker-normalized features. For alignment, we
essentially have to remove the speaker identity from the features by estimating the speaker identity (with
the inverse of the fMLLR matrix), then removing it from the model (by multiplying the inverse matrix with
the feature vector). These quasi-speaker-independent acoustic models can then be used in the alignment
process.

2.5 Training Acoustic Models

2.5.1 Prepare directories

Create a directory to house your training data and models:

cd kaldi/egs
mkdir mycorpus

The goal of the next few sections is to recreate the directory structure laid out in Section 2.3 on Familiariza-
tion. The structure we’ll be building in this section starts at the node mycorpus:

In the following sections, we’ll fill these directories in. For now, let’s just create them.

Enter your new directory and make soft links to the following directories in the wsj directory to access
necessary scripts: steps, utils, and src. In addition to the directories, you will also need a copy of the
path.sh script in your mycorpus directory. You will likely need to edit path.sh to make sure the
KALDI-ROOT path is correct. Make sure that the number of double dot levels takes you from your
primary Kaldi directory (KALDI-ROOT) down to your working directory. For example, there are three
levels between kaldi and wsj/s5, but only two levels between kaldi and mycorpus.

cd mycorpus

In -s ../wsj/sb/steps .
1n -s ../wsj/sb/utils .
In -s ../../src .

cp ../wsj/sb/path.sh .

Since the mycorpus directory is a level higher than wsj/s5, we need to edit the path.sh file.
vim path.sh

Press 1 to insert; esc to exit insert mode;
‘rwq’ to write and quit; ‘:q’ to quit normally;
‘:q!’ to quit forcibly (without saving)

(4

12 CHAPTER 2. KALDI

e;xampjc | l
directory S,Cﬂimhm {drﬂth
e pathth =
. -earsh
-nohup‘ﬂl]t

data
local : lang
J lang
Scripts and Files ?:;E‘;;‘;d Filles
lang L disambighe o
-L.fs
Scripes and Files -uoz.tint “WaV.SCP
-lexicon.txt) xt ~SCIments
-nonsilence_phones.txt UE: ~text
-optional_silence.txt -phuru:s -words.txt
-silence_phones.txt E'u nes. bt -spk2urte
-extra_guestions. txt PO -utt2spk
~words. bt

Figure 2.2: Directory structure to replicate

2.5. TRAINING ACOUSTIC MODELS 13

Change the path line in path.sh from:
export KALDI ROOT='pwd'/../../..

to:

export KALDI_ROOT='pwd'/../..

Finally, you will need to create the following directories in mycorpus: exp, conf, data. Within data, create
the following directories: train, lang, local and local/lang. The next few steps in the tutorial will explain
how to fill these directories in.

cd mycorpus
mkdir exp
mkdir conf
mkdir data

cd data

mkdir train
mkdir lang
mkdir local

cd local
mkdir lang

2.5.2 Create files for data/train

The files in data/train contain information regarding the specifics of the audio files, transcripts, and speak-
ers. Specifically, it will contain the following files:

o text

e segments
e wav.scp
e utt2spk
e spk2utt

2.5.2.1 text

The text file is essentially the utterance-by-utterance transcript of the corpus. This is a text file with the
following format:

utt_id WORD1 WORD2 WORD3 WORD4 ...

utt_id = utterance ID

Example text file:

110236_20091006_82330_F 0001 I'M WORRIED ABOUT THAT
110236_20091006_82330_F 0002 AT LEAST NOW WE HAVE THE BENEFIT
110236_20091006_82330_F 0003 DID YOU EVER GO ON STRIKE

120958 2010012697016 M 0285 SOMETIMES LESS IS BETTER
120958 2010012697016 M 0286 YOU MUST LOVE TO COOK

Once you’ve created text, the lexicon will also need to be reduced to only the words present in the corpus.
This will ensure that there are no extraneous phones that we are “training.”

The following code makes a list of words in the corpus and stores it in a file called words.txt. Note that
when using the cut command, the default cut is delimited by tab (cut -f 2), but if the delimiter is anything

14 CHAPTER 2. KALDI

other than tab, it can be specified as such: cut -d 'my delimiter' -f 2- text. words.txt will serve as
input to a script, filter_dict.py, that downsizes the lexicon to only the words in the corpus.

cut -d ' ' -f 2- text | sed 's/ /\n/g' | sort -u > words.txt

An example script to accomplish this can be downloaded here: filter dict.py

filter_dict.py takes words.txt and lexicon.txt as input and removes words from the lexicon that are
not in the corpus. Remember that lexicon.txt should be in /data/local/lang. You will need to modify
the path to lexicon.txt within the script filter_dict.py. You may also need to change the specified
delimiter (tab, comma, space, etc.) within the file. filter_dict.py returns a modified lexicon.txt.

cd mycorpus
python filter_dict.py

One more modification needs to be made to the lexicon and that is adding the pseudo-word <oov> as an
entry. <oov> stands for ‘out of vocabulary’. Even though we ensured that all words present are indeed
in the dictionary, the system requires that this option be present. At the top of your lexicon, add <oov>
<oov>.

<oov> <oov>
A AHO
A EY1

2.5.2.2 segments

The segments file contains the start and end time for each utterance in an audio file. This is a text file with
the following format:

utt_id file id start time end time

utt_id = utterance ID

file id = file ID

start__time = start time in seconds
end_time = end time in seconds

Example segments file:

110236_ 20091006 _82330_F 001 110236_ 20091006 82330 F 0.0 3.44
110236_20091006_82330_F 002 110236_20091006_ 82330 F 4.60 8.54
110236_20091006 82330_F 003 110236_ 20091006 82330 F 9.45 12.05
110236_ 20091006 82330 _F 004 110236_ 20091006 82330 _F 13.29 16.13
110236_20091006_ 82330 _F 005 110236 20091006 82330_F 17.27 20.36
110236_20091006_82330_F 006 110236_20091006_ 82330_F 22.06 25.46
110236_ 20091006 82330_F 007 110236_ 20091006 82330 _F 25.86 27.56
110236_ 20091006 _82330_F 008 110236_ 20091006 82330 _F 28.26 31.24

120958 2010012697016 M 282 120958 20100126 97016_M 915.62 919.67
120958 2010012697016 M 283 120958 20100126 97016 M 920.51 922.69
120958 2010012697016 M 284 120958 20100126_ 97016 M 922.88 924.27
120958 20100126 97016 M 285 120958 20100126 97016 M 925.35 927.88
120958 20100126 _97016_M 286 120958 20100126 97016 M 928.31 930.51

https://www.eleanorchodroff.com/tutorial/kaldi/scripts/filter_dict.py

2.5. TRAINING ACOUSTIC MODELS 15

2.5.2.3 wav.scp

wav.scp contains the location for each of the audio files. If your audio files are already in wav format, use
the following template:

file_id path/file
Example wav.scp file:

110236_20091006_82330__F path/110236_20091006_82330_F.wav
111138 20091215 82636_F path/111138 2009121582636 F.wav
111138_20091217_82636_F path/111138_20091217_82636_F.wav

120947_20100125_59427_F path/120947_20100125_59427_F.wav
120953_20100125_79293_F path/120953 20100125_79293_F.wav
120958 20100126_97016_ M path/120958 20100126_97016_ M.wav

If your audio files are in a different format (sphere, mp3, flac, speex), you will have to convert them to wav
format. Instead of having to convert the files manually and storing multiple copies of the data, you can let
Kaldi convert the files on-the-fly. The tool sox will come in handy in many of these cases. As an example
of sphere (suffix .sph) to wav, you can use the following template; make sure to change path to the actual
path where files are located. Also, don’t forget the pipe ().

file_id path/sph2pipe -f wav -p -c 1 path/file |

For an example using sox, this following code will convert the second channel of an 128kbit/s 44.1kHz
joint-stereo mp3 file to a 8kHz mono wav file (which will be processed by Kaldi to generate the features):

file_id path/sox audio.mp3 -t wav -r 8000 -c 1 - remix 2|

2.5.2.4 utt2spk

utt2spk contains the mapping of each utterance to its corresponding speaker. As a side note, engineers
will often conflate the term speaker with recording session, such that each recording session is a different
“speaker”. Therefore, the concept of “speaker” does not have to be related to a person — it can be a room,
accent, gender, or anything that could influence the recording. When speaker normalization is performed
then, the normalization may actually be removing effects due to the recording quality or particular accent
type. This definition of “speaker” then is left up to the modeler.

utt2spk is a text file with the following format:
utt_id spkr

utt_id = utterance ID
spkr = speaker 1D

Example utt2spk file:

110236_20091006_82330_F 0001 110236
110236_20091006_ 82330 _F 0002 110236
110236_20091006_ 82330 _F 0003 110236
110236_20091006_82330_F 0004 110236

120958 20100126 _97016_M 0284 120958
120958 2010012697016 M 0285 120958
120958 2010012697016 M 0286 120958

Since the speaker ID in the first portion of our utterance IDs, we were able to use the following code to
create the utt2spk file:

16 CHAPTER 2. KALDI

this should be interpreted as one line of code
cat data/train/segments | cut -f 1 -d ' ' | \
perl -ane 'chomp; @F = split "_", $_; print $_ . " " . @F[0] . "\n";' > data/train/utt2spk

2.5.2.5 spk2utt

spk2utt is a file that contains the speaker to utterance mapping. This information is already contained in
utt2spk, but in the wrong format. The following line of code will automatically create the spk2utt file and
simultaneously verify that all data files are present and in the correct format:

utils/fix_data_dir.sh data/train

While spk2utt has already been created, you can verify that it has the following format:
spkr utt_id1 utt_id2 utt_id3

2.5.3 Create files for data/local/lang

data/local/lang is the directory that contains language data specific to the your own corpus. For example,
the lexicon only contains words and their pronunciations that are present in the corpus. This directory will
contain the following:

e lexicon.txt

e nonsilence_phones.txt

e optional_silence.txt

e silence_phones.txt

e extra_questions.txt (optional)

2.5.3.1 lexicon.txt

You will need a pronunciation lexicon of the language you are working on. A good English lexicon is the
CMU dictionary, which you can find here. The lexicon should list each word on its own line, capitalized,
followed by its phonemic pronunciation

WORD W ER D
LEXICONLEHKSIHK AHN

The pronunciation alphabet must be based on the same phonemes you wish to use for your acoustic models.
You must also include lexical entries for each “silence” or “out of vocabulary” phone model you wish to train.
Once you've created the lexicon, move it to data/local/lang/.

cp lexicon.txt kaldi-trunk/egs/mycorpus/data/local/lang/

2.5.3.2 nonsilence__phones.txt

As the name indicates, this file contains a list of all the phones that are not silence. Edit phones.txt so
that like phones are on the same line. For example, AAO, AA1, and AA2 would go on the same line; K would
go on a different line. Then save this as nonsilence_phones.txt.

this should be interpreted as one line of code

cut -d ' ' -f 2- lexicon.txt | \

sed 's/ /\n/g' | \

sort -u > nonsilence_phones.txt

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

2.5. TRAINING ACOUSTIC MODELS 17

2.5.3.3 silence_ phones.txt

silence_phones.txt will contain a ‘SIL’ (silence) and ‘oov’ (out of vocabulary) model. optional silence.txt
will just contain a ‘SIL’ model. This can be created with the following code:

echo -e 'SIL'\\n'oov' > silence_phones.txt

2.5.3.4 optional_ silence.txt

optional_silence.txt will simply contain a ‘SIL’ model. Use the following code to create that file.

echo 'SIL' > optional_silence.txt

2.5.3.5 extra_ questions.txt

A Kaldi script will generate a basic extra_questions.txt file for you, but in data/lang/phones. This
file “asks questions” about a phone’s contextual information by dividing the phones into two different sets.
An algorithm then determines whether it is at all helpful to model that particular context. The standard
extra_questions.txt will contain the most common “questions.” An example would be whether the phone
is word-initial vs word-final. If you do have extra questions that are not in the standard extra_ questions.txt
file, they would need to be added here.

2.5.4 Create files for data/lang

Now that we have all the files in data/local/lang, we can use a script to generate all of the files in
data/lang.

cd mycorpus
utils/prepare_lang.sh data/local/lang 'O0V' data/local/ data/lang

where the underlying argument structure ts:
utils/prepare_lang.sh <dict-src-dir> <oov-dict-entry> <tmp-dir> <lang-dir>

The second argument refers to lexical entry (word) for a “spoken noise” or “out of vocabulary” phone. Make
sure that this entry and its corresponding phone (oov) are entered in lexicon.txt and the phone is listed
in silence_phones.txt.

Note that some older versions of Kaldi allowed the source and tmp directories to refer to the same location.
These must now point to different directories.

The new files located in data/lang are L.fst, L_disambig.fst, oov.int, oov.txt, phones.txt,
topo, words.txt, and phones. phones is a directory containing many additional files, including the
extra_questions.txt file mentioned in section 2.5.3. It is worth taking a look at this file to see how the
model may be learning more about a phoneme’s contextual information. You should notice fairly logical
and linguistically motivated divisions among the phones.

2.5.5 Set the parallelization wrapper

Training can be computationally expensive; however, if you have multiple processors/cores or even multiple
machines, there are ways to speed it up significantly. Both training and alignment can be made more efficient
by splitting the dataset into smaller chunks and processing them in parallel. The number of jobs or splits in
the dataset will be specified later in the training and alignment steps. Kaldi provides a wrapper to implement
this parallelization so that each of the computational steps can take advantage of the multiple processors.

18 CHAPTER 2. KALDI

Kaldi’s wrapper scripts are run.pl, queue.pl, and slurm.pl, along with a few others we won’t discuss here.
The applicable script and parameters will then be specified in a file called cmd. sh located at the top level of
your corpus’ training directory.

o run.pl allows you to run the tasks on a local machine (e.g., your personal computer).
o queue.pl allows you to allocate jobs on machines using Sun Grid Engine (see also Grid Computing).
e slurm.pl allows you to allocate jobs on machines using another grid engine software, called SLURM.

The parallelization can be specified separately for training and decoding (alignment of new audio) in the
file cmd.sh. The following code provides an example using parameters specific to the Johns Hopkins CLSP
cluster. If you are training on a personal computer or do not have a grid engine, you can set train_cmd and
decode_cmd to "run.pl".

As a side note, vim is a text editor that operates within the Unix shell. The commented portion of text
provides the crucial commands you’ll need to know to insert, change modes, write, and quit the editor.
Finally, cmd. sh will automatically be created by typing vim cmd.sh.

cd mycorpus
vim cmd.sh

Press 1 to insert; esc to exit insert mode;
‘rwq’ to write and quit; ‘:q’ to quit normally;
‘:q!’ to quit forcibly (without saving)

Insert the following text in cmd.sh
train_cmd="queue.pl"
decode_cmd="queue.pl --mem 2G"

Please see http://www.kaldi-asr.org/doc/queue.html for how to correctly configure this.

Once you've quite vim, then run the file:

cd mycorpus
./cmd.sh

2.5.6 Create files for conf

The directory conf requires one file mfcc. conf, which contains the parameters for MFCC feature extraction.
The text file includes the following information:

—use-energy=false
—sample-frequency=16000

The sampling frequency should be modified to reflect your audio data. This file can be created manually or
within the shell with the following code:

Create mfcc.conf by opening it in a text editor like vim
cd mycorpus/conf
vim mfcc.conf

Press 1 to insert; esc to exit insert mode;
‘:wq’ to write and quit; ‘:q’ to quit normally;

‘:q!’ to quit forcibly (without saving)

Insert the following text in