
Discussion	
Found perceptual generalization of  VOT across place of  articulation

•  Observed for both long and short VOT distributions


•  Present findings are consistent with Theodore & Miller (2010), who also observed generalization of  long 
and short VOT values in a perceptual task with more extreme VOT manipulations


•  Previous studies have found no perceptual learning or generalization when listeners were asked to produce 
a shortened VOT (e.g., Nielsen 2011) or voiceless VOT values were more consistent with unaspirated stops 
(e.g., Clarke & Luce 2005)


•  Observed with less exaggerated and more variable VOT values

•  Manipulation more representative of  natural talker variation

•  Commensurately weaker adaptation effects relative to Theodore & Miller (2010)


•  Generalization occurs rapidly, with minimal exposure (27 × 2 instances)




Prior knowledge of  VOT covariation accounts for generalization results

•  Biased guessing or condition-independent VOT preference do not account for perceptual results

•  Alternative models include:


•  Prior linear relationships between stop categories (e.g., Chodroff  & Wilson, submitted)

•  Estimate grand mean VOT of  voiceless stops from exposure items and perform mean subtraction or z-

scoring for normalization (e.g., Lobanov 1971; Nearey 1978; McMurray & Jongman 2011)

•  Dispreference for test VOTs that disobey the rank order (VOT [pʰ] < VOT [kʰ]) relative to exposure 

VOTs. Predicts less generalization in the ‘train short – test [kʰ]’ and ‘train long – test [pʰ]’ conditions as 
both test VOTs generally obey the ranking (short - kʰ: χ2(1) = 118.9, long - pʰ: χ2(1) = 393.2; ps < 0.001)


•  Data indicates substantial perceptual noise (see also Kronrod et al. 2012) and strong response bias

•  How much noise is present in VOT perception? How does the response bias relate to perceptual noise? Why 

do we find a primacy bias when some sequential two-interval experiments find recency biases?


Perception results and modeling indicate that listeners exploit covariation among stop VOTs in talker adaptation


Percep-on	methods	
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Substantial variability exists in the phonetic realization of  speech sounds 
across talkers, yet listeners adapt rapidly and with ease. One source of  
information that could be exploited in talker adaptation is knowledge of  
acoustic-phonetic covariation across phonetic categories.

 

Evidence for acoustic-phonetic covariation comes from previously observed 
relationships among:


•  F1xF2 vowel plane (e.g., Joos 1948; Nearey & Assmann 2007)

•  voice onset time (VOT) of  American English stop consonants, esp. 

word-initial voiceless aspirated stops (e.g., Chodroff  et al. 2015)


Previous studies of  perceptual generalization and phonetic imitation 
(e.g., Theodore & Miller 2010; Nielsen 2011) provide evidence that 
knowledge of  VOT correlations may play a role in talker adaptation.



Limitations of  previous VOT adaptation experiments:

•  Exaggerated VOT manipulation (e.g., short: 88 ms vs. long: 183 ms)

•  Extensive exposure to the novel talker (e.g., 120 exposures before testing)

•  Limited stimulus variability (e.g., just two VOT values per stop and talker)



Objectives:

•  Employ more natural and variable stimuli to investigate perceptual 

adaptation and generalization to an unheard place of  articulation

•  Examine effects of  adaptation after minimal exposure

•  Examine effectiveness of  VOT covariation in accounting for adaptation


Perceptual	Adapta-on:	Results	

Computa-onal	model	

Procedure


Order held constant

Vowel category held constant


Exposure to “Mike”

 LONG OR SHORT*


[pʰ tʰ] or [tʰ kʰ]


pʰ


kʰ #2
kʰ #1


tʰ
 “Which one sounds most like Mike?”


Test

 LONG AND SHORT


[kʰ] or [pʰ]


6 blocks, 27 trials per block

2-IFC


*Between-subjects manipulation

(four separate conditions)


train [pʰ tʰ] - test [kʰ]
 train [tʰ kʰ] - test [pʰ]
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[pʰ]
 [tʰ]
 [kʰ]


long pʰ:  α = 26.96, β = 0.297

short pʰ: α = 10.66, β = 0.179


long tʰ: α = 43.08, β = 0.400

short tʰ: α = 37.87, β = 0.525


long kʰ: α = 44.86, β = 0.439

short kʰ: α = 31.28, β = 0.404
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μ = 91 ms

σ = 17 ms


μ = 108 ms

σ = 16 ms


μ = 102 ms

σ = 15 ms


μ = 72 ms

σ = 12 ms


μ = 60 ms

σ = 18 ms


μ = 77 ms

σ = 14 ms


Participants

•  48 participants (12 per condition, 34 female)


Population mean and covariance were inferred from the same laboratory production study used for stimulus creation (see Methods)


Stimuli

•  Stimuli created from careful-speech CVC syllables (Chodroff  & Wilson 

2014): [pʰ tʰ kʰ] × [i eɪ ɛ æ ʌ ɑ ɔ oʊ u] ×[t] 


•  Gamma distributions fit to stop categories from two male talkers: one 
with naturally long VOTs and one with naturally short VOTs


•  Manipulated VOT of  a single male talker to match randomly generated 
values (3 stops × 9 vowels × 3 repetitions × 2 VOT lengths = 162 stimuli)


pʰ
 tʰ


xp ~ N(yp, σ2) 	 xt ~ N(yt, σ2) 	

yp	 yt	

Adapta-on	to	novel	talker	
Update posterior distribution N(μ, Σ) on talker mean (‘target’) 
VOT values μ = [μp μt μk]T by sequential application of  Bayes’ 
Theorem to exposure stimuli. Initial prior is N(μpopulation, Σpopulation).


Exposure	and	Adapta-on	

+NOISE


TARGET


perceptual noise variance σ2 (Kronrod et al. 2012)


Test [ph]

All blocks


β0 = 0.27, p < 0.05

βcond×vot.ratio = 0.36, p < .001


Test [ph]

First block


β0 = 0.06, p = 0.06

βcond×vot.ratio = 0.43, p < .001


•  Listeners showed generalized adaptation to both long and short VOTs across place of  articulation

•  Significant generalization observed in all four conditions

•  Moderately lower sensitivity between long and short stimuli in the ‘train long [pʰ tʰ]– test [kʰ]’ condition

•  Difference of  log VOT values (= log of  VOT ratio) provided best quantitative account of  congruency effect on choice responses 

(see condition x vot.ratio in logistic mixed-effects model), but similar results with VOT difference

•  Evidence for early adaptation


•  Found significant interaction between condition and vot.ratio in the first block (27×2 exposure stimuli)

•  Bias to select first choice in all conditions (e.g., Yeshurun et al. 2008; Garcia-Perez & Alcala-Quintana 2011)


Probabilis-c	response	rule	
 p(respond #1) ∝ ɣlapse ∙ bias(#1) +


(1- ɣlapse) ∙ p(xk+ | μ) / [p(xk+ | μ)  + p(xk- | μ) ]


Response	Selec-on	(long	#1	-	short	#2	trial)	

kʰ #2
kʰ #1


yk+	 yk-	

xk+ ~ N(yk+, σ2) 	 xk- ~ N(yk-, σ2) 	
p(xk+ | μk) 	 p(xk- | μk) 	

+NOISE


TARGET


Σpopulation


Test [kh]
 d’
 log β

Long
 0.22


p < .01

0.35

p < .05


Short
 0.41

p < .01


0.41

p < .01


Test [ph]
 d’
 log β 

Long
 0.53


p < .001

0.60

p < .01


Short
 0.26

p = .06


0.34

p < .01
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Test [kh]

All blocks


β0 = 0.36, p < 0.001

βcond×vot.ratio = 0.28, p < .001


Test [kh]

First block


β0 = 0.42, p < 0.001

βcond×vot.ratio = 0.25, p < .01


Signal Detection Analysis (Wickens 2001)

Sensitivity (d’) to difference between long and short VOTs


Response bias (log β) in selecting the first choice


Logistic Mixed Effects Model

response #1 ~ 1 + condition*vot.ratio + (1 + vot.ratio | subj) + (1 | base.word)


condition = long (+1) or short (-1) | vot.ratio = log(VOT #1 / VOT #2)


covariance	prior	+	biased	guessing	
Listener uses population mean and covariance of  stop categories 
for adaptation, and guesses choice 1 more often in ‘lapse’ trials


References	&	
Acknowledgments	

References. Chodroff, E., Godfrey, J., Khudanpur, 
S., Wilson, C. (2015). Structured variability in 
acoustic realization: A corpus study of  voice onset 
time in American English stops. Proc. 18th ICPhS. 
Glasgow, UK. � Chodroff, E., Wilson, C. (2014). Burst 
spectrum as a cue for the stop voicing contrast in 
American English. J. Acoust. Soc. Amer., 136(5), 2762–
2772. � García-Pérez, M. A., Alcalá-Quintana, R. 
(2011). Interval bias in 2AFC detection tasks: sorting 
out the artifacts. Atten. Percep. Psychophys., 73(7), 2332–
2352. �  Joos, M. (1948). Acoustic Phonetics. Language, 
24(2), 5–136. � Kronrod, Y., Coppess, E., Feldman, N. 
H. (2012). A unified model of  categorical effects in 
consonant and vowel perception. Proc. 34th Ann. Conf. 
Cog. Sci. Soc., 629–634. � Lobanov, B. M. (1971). 
Classification of  Russian Vowels Spoken by Different 
Speakers. J. Acoust. Soc. Amer., 49(2-2), 606–608. � 
McMurray, B., Jongman, A. (2011). What information 
is necessary for speech categorization? Harnessing 
variability in the speech signal by integrating cues 
computed relative to expectations. Psych. Review, 
118(2), 219–246. �  Nearey, T. M., Assmann, P. F. 
(2007). Probabilistic “Sliding Template” Models for 
Indirect Vowel Normalization. In M.-J. Solé, P. S. 
Beddor, & M. Ohala (Eds.), Exp. App. Phon. (pp. 246–
270). New York: Oxford University Press. � Nielsen, 
K. (2011). Specificity and abstractness of  VOT 
imitation. J. Phon., 39(2):132–142. � Theodore, R., 
Miller, J. (2010). Characteristics of  listener sensitivity 
to talker-specific phonetic detail. J. Acoust. Soc. Amer., 
128(4):2090–2099. � Wickens, T. D. (2001). Elementary 
signal detection theory. Oxford University Press. � 
Yeshurun, Y., Carrasco, M., Maloney, L. T. (2008). 
Bias and sensitivity in two-interval forced choice 
procedures: Tests of  the difference model. Vision 
Research, 48(17), 1837–1851.

Acknowledgments. We would like to thank Chris 
Kirov, the JHU Phonetics and Phonology Lab, and 
the audience at the JHU Center for Language and 

Speech Processing for helpful discussion.

 This work was supported by a Distinguished Science 
of  Learning Pre-doctoral Fellowship from the JHU 
Science of  Learning Institute and a fellowship from 

the Dolores Zohrab Liebmann Fund.


BIC favors the covariance-based adaptation model over either biased guessing or independent preference models


biased	guessing	

independent	preference	+	biased	guessing	
Listener responds choice 1 with stimulus-independence bias


Listener has condition-independent preferences for stop-specific 
VOT values, and a bias for choice 1 in ‘lapse’ trials


Methods	

BIC
 Test [pʰ] 
Test [kh]

biased guessing
 6024
 6059


VOT preference + biased guessing
 6024
 6061

covariance prior + biased guessing
 5894
 5954
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train [pʰ tʰ] - test [kʰ]
 train [tʰ kʰ] - test [pʰ]


red = train long

blue = train short


Trial structure



